Окръжност

От testwiki
Направо към навигацията Направо към търсенето
Окръжност с радиус r, диаметър d и център М

Окръжността е геометрична затворена крива, образувана от множеството от точките в дадена равнина, намиращи се на определено разстояние (радиус, r) от определена точка (център). Диаметър на окръжността (d) е отсечка, свързваща две точки от окръжността и преминаваща през центъра ѝ, като дължината ѝ е два пъти радиуса (d = 2r).

Кръг

Шаблон:Основна

Фигурата, съставена от точките на окръжността и точките във вътрешността ѝ, т.е. точките, които са на разстояние от центъра, равно или по-малко от радиуса, се нарича кръг.

Окръжност се отнася към кръг в двуизмерното пространство, както сфера към кълбо в триизмерното.

Определения

Окръжността е и частен случай на елипса с два съвпадащи фокуса и може да бъде определена също като сечение на прав кръгов конус и равнина, перпендикулярна на оста му.

Площта S (лицето) на кръг с радиус r или диаметър d е

 S=πr2=πd2/40,785d2.

Периметърът p (обиколката) на кръг, тоест дължината на окръжност, с радиус r или диаметър d е

 p=2πr=πd.

По Евклид

Според класическото определение окръжността е геометричното място на точките в равнината, разположени на еднакво разстояние от дадена точка. В известното математическо съчинение „Елементи“ древногръцкият математик Евклид (IV – III век пр.н.е.) дава следното определение:

Шаблон:Цитат

По Аполоний от Перге

Аполониевата дефиниция за окръжност: d1/d2 е константа

Аполоний от Перге (262 – 190 г. пр.н.е.) показва, че окръжността може да се определи и като множеството от точки в дадена равнина, за които съотношението на разстоянието до две зададени точки е постоянно и различно от единица.[1]

Доказателството за еквивалентност на определението на Аполоний с класическото определение се състои от две части. Първо, трябва да се докаже, че при зададени две точки, фокусите A и B, и съотношение на разстоянията, всяка точка P, за която е изпълнено условието, трябва да лежи върху определена окръжност. Ако C е друга точка, също изпълняваща условието и лежаща на отсечката AB. От теоремата за ъглополовящата следва, че отсечката PC е ъглополовяща на вътрешния ъгъл APB, заради съотношението:

|AP||BP|=|AC||BC|

Аналогично отсечка PD през точка D на правата AB е ъглополовяща на съответния външен ъгъл BPQ, където Q лежи на правата AP. Тъй като сборът на вътрешния и външния ъгъл е 180°, ъгълът CPD е прав. Множеството от точки P, за които ъгълът CPD е прав, образуват окръжност, за която CD е диаметър. Вторият етап от доказателството е да се покаже, че всяка точка от въпросната окръжност удовлетворява зададеното съотношение на разстоянията.[2]

Дефиницията на Аполоний е тясно свързана с едно отношение на окръжностите с геометрията на двойното отношение на точките в комплексната равнина. Ако точките A, B и C са зададени както в горното доказателство, Аполониевата окръжност за тези три точки е множеството от точките P, за които абсолютната стойност на двойното отношение е равна на 1:

|[A,B;C,P]|=1 

Формулирано по друг начин, P е точка от Аполониевата окръжност тогава и само тогава, когато двойното отношение [A,B;C,P] лежи върху единичната окръжност на комплексната равнина.

Определението на Аполоний дава възможност за дефиниране и на т.нар. обобщена окръжност, множество от криви, включващо освен окръжностите в тесен смисъл, също и правите, образувани при:

|AP||BP|=|AC||BC|=1

В декартови координати

  • Уравнението на окръжност с център M=(xM,yM) и радиус r е
    (xxM)2+(yyM)2=r2
    ако M съвпада с центъра на координатната система, уравнението придобива вида
    x2+y2=r2.
  • Параметрично представяне на окръжност:
    x=xM+rcosφ
    y=yM+rsinφ
    където координатите x и y се изразяват чрез параметъра φ, който може да приема всички стойности в интервала 0φ<2π.

В полярни координати

Ако полярните координати на центъра на окръжност са M=(r,α), то окръжността с радиус r се описва с равенството

ρ(φ)=2rcos(φα), 0φ<2π
ако M е началото на координатната система, то
ρ=r.

Термини, свързани с окръжността

  • Всеки две точки от окръжността я делят на две части, които се наричат дъги на окръжността. Дъгата се нарича полуокръжност, ако отсечката, съединяваща краищата ѝ, е диаметър.
    • d=2r
  • Кръгов сектор или просто сектор се нарича част от кръг, ограничена от дъга и два радиуса, които съединяват краищата на дъгата с центъра на кръга.
  • Отсечка, съединяваща две точки от окръжност, се нарича хорда. Диаметърът на окръжността е хорда, минаваща през центъра ѝ.
  • Сегмент се нарича част от кръг, ограничена от дъга и прилежащата ѝ хорда.
  • Допирателна (тангента) се нарича права, имаща само една обща точка с окръжност, точката се нарича допирна точка.
  • Секуща се нарича права, която има две общи точки с окръжност.
  • Централен ъгъл на окръжност се нарича ъгъл, чийто връх съвпада с центъра на окръжността.
  • Вписан ъгъл се нарича ъгъл, чийто връх лежи на окръжността, а раменете му са секущи.
  • Периферен ъгъл се нарича ъгъл, на който върхът е точка от окръжността, едното рамо е допирателна към К, а другото пресича окръжността.
  • Две окръжности, които имат общ център, се наричат концентрични.

Свойства

  • Права и окръжност може да нямат общи точки, да имат една обща точка (правата е допирателна) и да имат две общи точки (правата е секуща).
  • През три точки, нележащи на една права, може да се прекара само една окръжност.
  • Допирната точка на две окръжности лежи на правата, съединяваща техните центрове.

Вижте също

Източници