Аналитична функция

От testwiki
Направо към навигацията Направо към търсенето

В математиката под аналитична функция се разбира функция, която е зададена локално със сходящ степенен ред. Аналитичните функции представляват своеобразно обобщение на полиномите. Прави се разлика между аналитична функция на реална променлива и аналитична функция на комплексна променлива (холоморфна функция). Макар че и двата вида имат някои общи свойства (например диференцируемост), холоморфните функции притежават допълнителни свойства, които липсват при аналитичните функции на реална променлива.

Определение

Една функция е реална аналитична в отвореното множество D от реалната права, ако за всяка точка x0D е възможно представяне по следния начин:

f(x)=n=0an(xx0)n=a0+a1(xx0)+a2(xx0)2+a3(xx0)3+,

където коефициентите a0, a1, ... са реални числа и степенният ред е сходящ за всяко x в околност на x0.

Казано по друг начин, аналитична функция е безкрайно диференцируема функция в D, чиито тейлъров ред във всяка точка x0 в D

T(x)=n=0f(n)(x0)n!(xx0)n

е сходящ за всяко x в околност на x0 и е равен на f(x).

Определението за комплексна аналитична функция се получава като заменим реална права с комплексна равнина в горните редове.

Примери

  • Всеки комплексен полином (от степен n) е аналитичен. Това се дължи на факта, че коефициентите пред членовете от степен по-висока от n са нули и полиномът съвпада с тейлоровия си ред.
  • Функцията абсолютна стойност върху реалната права или комплексната равнина не е аналитична, понеже не е диференцируема в 0.

Свойства на аналитичните функции

  • Сбор, произведение и композиция на аналитични функции е аналитична функция.
  • Реципрочната функция на аналитична функция, която не се анулира, е аналитична.
  • Ако функцията f е аналитична в точката xD, то тя притежава производни от произволен ред в xD. Обратното твърдение не е вярно.
  • За всяко отворено множество Ω ⊆ C, множеството A(Ω), съдържащо всички ограничени аналитични функции u : Ω → C е банахово пространство спрямо супремум-нормата. Че границата на равномерно сходяща редица от аналитични функции е аналитична функция, се доказва в (при поставените условия) чрез теоремата на Морера.

Вижте също

Литература

  • Теория на аналитичните функции, Татяна Аргирова, Университетско изд. „Св. Климент Охридски“, 1992