Таблица с интеграли на тригонометрични функции

От testwiki
Направо към навигацията Направо към търсенето

Шаблон:Без източници Това е таблица с интеграли (примитивни функции) от тригонометрични функции. За по-пълна таблица с интеграли вижте таблица на интегралите и списък с интеграли.

Костантата c не е нула.

sincxdx=1ccoscx
sinncxdx=sinn1cxcoscxnc+n1nsinn2cxdx(n>0)
xsincxdx=sincxc2xcoscxc
xnsincxdx=xnccoscx+ncxn1coscxdx(n>0)
sincxxdx=i=0(1)i(cx)2i+1(2i+1)(2i+1)!
sincxxndx=sincx(n1)xn1+cn1coscxxn1dx
dxsincx=1cln|tancx2|
dxsinncx=coscxc(1n)sinn1cx+n2n1dxsinn2cx(n>1)
dx1±sincx=1ctan(cx2π4)
xdx1+sincx=xctan(cx2π4)+2c2ln|cos(cx2π4)|
xdx1sincx=xccot(π4cx2)+2c2ln|sin(π4cx2)|
sincxdx1±sincx=±x+1ctan(π4cx2)
sinc1xsinc2xdx=sin(c1c2)x2(c1c2)sin(c1+c2)x2(c1+c2)(|c1||c2|)
coscxdx=1csincx
cosncxdx=cosn1cxsincxnc+n1ncosn2cxdx(n>0)
xcoscxdx=coscxc2+xsincxc
xncoscxdx=xnsincxcncxn1sincxdx
coscxxdx=ln|cx|+i=1(1)i(cx)2i2i(2i)!
coscxxndx=coscx(n1)xn1cn1sincxxn1dx(n1)
dxcoscx=1cln|tan(cx2+π4)|
dxcosncx=sincxc(n1)cosn1cx+n2n1dxcosn2cx(n>1)
dx1+coscx=1ctancx2
dx1coscx=1ccotcx2
xdx1+coscx=xctancx2+2c2ln|coscx2|
xdx1coscx=xxcotcx2+2c2ln|sincx2|
coscxdx1+coscx=x1ctancx2
coscxdx1coscx=x1ccotcx2
cosc1xcosc2xdx=sin(c1c2)x2(c1c2)+sin(c1+c2)x2(c1+c2)(|c1||c2|)
tancxdx=1cln|coscx|
tanncxdx=1c(n1)tann1cxtann2cxdx(n1)
dxtancx+1=x2+12cln|sincx+coscx|
dxtancx1=x2+12cln|sincxcoscx|
tancxdxtancx+1=x212cln|sincx+coscx|
tancxdxtancx1=x2+12cln|sincxcoscx|
cotcxdx=1cln|sincx|
cotncxdx=1c(n1)cotn1cxcotn2cxdx(n1)
dx1+cotcx=tancxdxtancx+1
dx1cotcx=tancxdxtancx1
seccxdx=1cln|seccx+tancx|
secncxdx=secn1cxsincxc(n1)+n2n1secn2cxdx (n1)
dxsecx+1=xtanx2
csccxdx=1cln|csccx+cotcx|
cscncxdx=cscn1cxcoscxc(n1)+n2n1cscn2cxdx (n1)

sin и cos

dxcoscx±sincx=1c2ln|tan(cx2±π8)|
dx(coscx±sincx)2=12ctan(cxπ4)
dx(cosx+sinx)n=1n1(sinxcosx(cosx+sinx)n12(n2)dx(cosx+sinx)n2)
coscxdxcoscx+sincx=x2+12cln|sincx+coscx|
coscxdxcoscxsincx=x212cln|sincxcoscx|
sincxdxcoscx+sincx=x212cln|sincx+coscx|
sincxdxcoscxsincx=x212cln|sincxcoscx|
coscxdxsincx(1+coscx)=14ctan2cx2+12cln|tancx2|
coscxdxsincx(1+coscx)=14ccot2cx212cln|tancx2|
sincxdxcoscx(1+sincx)=14ccot2(cx2+π4)+12cln|tan(cx2+π4)|
sincxdxcoscx(1sincx)=14ctan2(cx2+π4)12cln|tan(cx2+π4)|
sincxcoscxdx=12csin2cx
sinc1xcosc2xdx=cos(c1+c2)x2(c1+c2)cos(c1c2)x2(c1c2)(|c1||c2|)
sinncxcoscxdx=1c(n+1)sinn+1cx(n1)
sincxcosncxdx=1c(n+1)cosn+1cx(n1)
sinncxcosmcxdx=sinn1cxcosm+1cxc(n+m)+n1n+msinn2cxcosmcxdx(m,n>0)
sinncxcosmcxdx=sinn+1cxcosm1cxc(n+m)+m1n+msinncxcosm2cxdx(m,n>0)
dxsincxcoscx=1cln|tancx|
dxsincxcosncx=1c(n1)cosn1cx+dxsincxcosn2cx(n1)
dxsinncxcoscx=1c(n1)sinn1cx+dxsinn2cxcoscx(n1)
sincxdxcosncx=1c(n1)cosn1cx(n1)
sin2cxdxcoscx=1csincx+1cln|tan(π4+cx2)|
sin2cxdxcosncx=sincxc(n1)cosn1cx1n1dxcosn2cx(n1)
sinncxdxcoscx=sinn1cxc(n1)+sinn2cxdxcoscx(n1)
sinncxdxcosmcx=sinn+1cxc(m1)cosm1cxnm+2m1sinncxdxcosm2cx(m1)
sinncxdxcosmcx=sinn1cxc(nm)cosm1cx+n1nmsinn2cxdxcosmcx(mn)
sinncxdxcosmcx=sinn1cxc(m1)cosm1cxn1n1sinn1cxdxcosm2cx(m1)
coscxdxsinncx=1c(n1)sinn1cx(n1)
cos2cxdxsincx=1c(coscx+ln|tancx2|)
cos2cxdxsinncx=1n1(coscxcsinn1cx)+dxsinn2cx)(n1)
cosncxdxsinmcx=cosn+1cxc(m1)sinm1cxnm2m1cosncxdxsinm2cx(m1)
cosncxdxsinmcx=cosn1cxc(nm)sinm1cx+n1nmcosn2cxdxsinmcx(mn)
cosncxdxsinmcx=cosn1cxc(m1)sinm1cxn1m1cosn2cxdxsinm2cx(m1)

sin и tan

sincxtancxdx=1c(ln|seccx+tancx|sincx)
tanncxdxsin2cx=1c(n1)tann1(cx)(n1)

cos и tan

tanncxdxcos2cx=1c(n+1)tann+1cx(n1)

sin и cot

cotncxdxsin2cx=1c(n+1)cotn+1cx(n1)

cos]] и cot

cotncxdxcos2cx=1c(1n)tan1ncx(n1)

tan и cot

tanm(cx)cotn(cx)dx=1c(m+n1)tanm+n1(cx)tanm2(cx)cotn(cx)dx(m+n1)

Шаблон:Таблици с интеграли