Триъгълно число

От testwiki
Направо към навигацията Направо към търсенето
Първите шест триъгълни числа

Триъгълно число[1] е общият брой еднакви елементи, които подредени образуват равностранен триъгълник, като в схемата вдясно. Триъгълното число n е сумата на точките в равностранен триъгълник със страни n точки и е равно на сумата от първите n естествени числа. Числото 0 („нулево триъгълно число“) също се приема за триъгълно число на триъгълник със страна 0. Първите 36 триъгълни числа (последователност A000217 в OEIS) са:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, …

Формула

Точната формула за триъгълно число е:

Tn=k=1nk=1+2+3++n=n(n+1)2=(n+12),

където (n+12) е биномен коефициент. Той представлява броят на неповтарящите се двойки, които могат да бъдат избрани от n + 1 елемента.

Първото уравнение може да се илюстрира с помощта на следното доказателство.[2] За всяко триъгълно число Tn си представете полу-квадратно разположение на елементите, съответстващи на триъгълното число, като на фигурата по-долу. Копирайте тази подредба и я завъртете, създавайки правоъгълник с удвоен брой елементи, с размери Tn. Триъгълното число е винаги точно половината от броя на елементите в такава фигура, или: Tn=n(n+1)2. Например T4 се илюстрира по следния начин:

2T4=4(4+1)=20 (зелени плюс жълти) означава, че T4=4(4+1)2=10 (зелени).

За доказателство се използва и математическата индукция.[3]

Връзка към други фигурни числа

Триъгълните числа имат широк спектър от връзки с другите фигурни числа.

Pn=n(n+1)=n2+n=Tn×2

Така n-тото правоъгълно число е двойно по-голямо от n-тото триъгълно число.

  • Сумата от две последователни триъгълни числа е квадратно число. То е равно на квадрата от разликата на двете числа (следователно разликата в двете е корен квадратен от сумата). Алгебрически:
Tn+Tn1=(n22+n2)+((n1)22+n12)=(n22+n2)+(n22n2)=n2=(TnTn1)2

Графично това се представя така:

6 + 10 = 16 10 + 15 = 25

Има безкрайно количество триъгълни числа, които са едновременно и квадратни числа; например: 1, 36, 1225. Някои от тях могат да бъдат получени с помощта на обикновена рекурсивна формула:

Sn+1=4Sn(8Sn+1) с S1=1.

Всички квадратни триъгълни числа се намират от рекурсията:

Sn=34Sn1Sn2+2 с S0=0 и S1=1
  • Сборът на първите n на брой триъгълни числа прави n-тото тетраедрално число, като има само 5 триъгълни числа, които са същевременно и тетраедрални:[4]
1, 10, 120, 1540 и 7140.

Триъгълни репдиджит числа

Репдиджит е естествено число, състоящо се само от една и съща цифра.

Според последователност A045914 в OEIS има само 7 числа, които са едновременно триъгълни и репдиджит:

0, 1, 3, 6, 55, 66, 666

В случая участват и едноцифрени числа, защото технически те са репдиджит само от една цифра.

Вижте също

Източници

Шаблон:Превод от